If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3j^2-28j+9=0
a = 3; b = -28; c = +9;
Δ = b2-4ac
Δ = -282-4·3·9
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-26}{2*3}=\frac{2}{6} =1/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+26}{2*3}=\frac{54}{6} =9 $
| 12=-0.01x^2+0.7x+6 | | 19k+2k-11k-8k=14 | | 2k^2-19k+9=0 | | F(x)=-8+5x | | 0=(x^2-5x+6) | | 37=13-2x | | 11-3w+7w=-45 | | 0.0006x3-77.523x2+3E+06x-5E+10R²=0.2349 | | -6v-15v+18v=15 | | 3(x+5)=-3x-21+4x | | 6c+4c-5c+3c-6c=12 | | x+3/7=x/4 | | -11=1-2k+4k | | 4b-3b=12 | | 40–2x+11=‐8x+100 | | -2y-1=y-25 | | 9w^2-49=0 | | 2q^2+11q+14=0 | | -31=-3+4x | | 2(x+4)=4x+3-2x+5. | | 15x−–13x+–15x−4x=–18 | | -365=-5(8r+1) | | 5y-32=2y+5 | | -8(3-8x)+8=-464 | | 242=-7x+(-2x+15) | | 7x+19=-2x+55. | | 6h-5h=17 | | 1/5(35x+25=) | | 2=v4-1 | | 25g^2-16=0 | | -n+3+6n=5(n+2)-7 | | 2+.16666666x=-4 |